
Phase separation in doped systems with spin-state transitions

A. O. Sboychakov, K. I. Kugel,* and A. L. Rakhmanov*
Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Izhorskaya Str. 13, Moscow 125412, Russia

D. I. Khomskii*
II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany

�Received 30 April 2009; revised manuscript received 25 June 2009; published 23 July 2009�

Spin-state transitions, observed in many transition-metal compounds containing Co3+ and Fe2+, may occur
with the change in temperature and pressure but also with doping, in which case the competition of single-site
effects and kinetic energy of doped carriers can favor a change in the spin state. We consider this situation in
a simple model, formally resembling that used for manganites in Kugel, Rakhmanov, and Sboychakov, Phys.
Rev. Lett. 95, 267210 �2005�. Based on such a model, we predict the possibility of a jumplike change in the
number of Co3+ ions undergoing spin-state transition caused by hole doping. A tendency to the electronic phase
separation within a wide doping range is demonstrated. Phase diagrams with the regions of phase separation
are constructed at different values of the characteristic parameters of the model.
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I. INTRODUCTION

Interplay of different degrees of freedom and different
types of ordering is a very important ingredient in determin-
ing the properties of strongly correlated electron systems.
These effects become especially interesting in doped sys-
tems. For this case, the tendency to phase separation and
formation of inhomogeneous states is rather typical. It can
take different forms: formation of isolated polarons or small
clusters �modification of a particular ordering by doped
charge carriers and the trapping of charge carriers in a dis-
torted region� or particular textures, e.g., stripes. This phase
separation can play a very important role in many phenom-
ena, such as colossal magnetoresistance in manganites1 and
probably also in high-Tc superconductors—although their
role in the latter is still a matter of hot debate.

The most common and best known case is the doping of
antiferromagnetic insulators, with the formation of ferromag-
netic droplets �“ferrons”� or charged antiferromagnetic do-
main walls �stripes�.1–3 We have recently shown that the in-
terplay of kinetic energy of doped holes with the orbital
structure can similarly give rise to a novel mechanism of
phase separation.4,5

A special interesting group of phenomena is met in sys-
tems where the respective ions can exist in different multi-
plet states. Typical examples are the compounds containing
Co3+ �or sometimes Fe2+�, which can exist in a low-spin �LS�
state with S=0 �t2g

6 �, intermediate-spin �IS� state S=1 �t2g
5 eg

1�,
and high-spin �HS� state �t2g

4 eg
2� with S=2, see, e.g., Ref. 6.

Close proximity in energy of these states can lead to a spe-
cial type of transition �or crossover�: spin-state transition
�SST�, typical example being LaCoO3.6–9 Also a spin-state
ordering is possible.10,11 Thus, these systems, in addition to
quite common charge, orbital, and spin degrees of freedom
with the possibility of respective orderings, have an “extra
dimension:” the possibility of spin-state �or, in other words,
multiplet� transitions. Correspondingly, if doping of materi-
als, such as manganites, can cause phase separation due to an
interplay of the motion �kinetic energy� of doped holes with

the underlying magnetic and orbital structure, in systems
with SST—like cobaltites, one can expect similar phenom-
ena due to an interplay with the spin state of the matrix. The
common mechanisms causing the phase separation manifest
themselves in the situation when the particular ordering ex-
isting in the system hinders the motion of doped holes. In
these cases, it may be favorable to locally modify the type of
ordering, facilitating the motion of the hole in such a dis-
torted region. Thus, holes can hardly move on an antiferro-
magnetic background, which was noticed already long ago
both for the two-band �double exchange� model12,13 and for
the single-band �Hubbard� model.14,15 At the same time, a
hole moves freely on the ferromagnetic background. As a
result, ferromagnetic polarons �ferrons� may be formed close
to the hole: the gain in kinetic energy of the hole moving on
the ferromagnetic background exceeds the loss of the mag-
netic energy.15–17

Similarly, certain types of orbital ordering suppress hole
motion, and it may be favorable to modify orbital pattern
close to a hole, forming an orbital polaron and facilitating
motion of a hole within it.4,18,19 For systems with SST, such
a role can be played, for example, by the phenomenon of
spin blockade:20 if one dopes the material with the Co3+ in a
low-spin state �S=0� by electrons, the created ionic state
could be Co2+ in a high-spin state �S=3 /2�. In this case, it is
evident that it is not possible to interchange the states LS
Co3+ and HS Co2+ by moving only one electron: one would
end up in the “wrong” states Co3+ and Co2+ both in IS states,
not in the original states �the hopping of an electron can
change the spin of corresponding states only by �1 /2,
whereas the spins of the original states differ by 3/2�. As a
consequence, an extra electron can only move in a crystal
leaving the trace of wrong spin states, which will lead to a
confinement and localization of this electron, similar to the
case of the usual Hubbard model.15

One can “repair” this by modifying the spin state in the
vicinity of a charge carrier �electron or hole� and this will
finally lead again to a creation of inhomogeneous states and
to phase separation. This phenomenon was actually observed
in some cobaltites, e.g., in La1−xSrxCoO3. There are already
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many indications of phase separation and formation of inho-
mogeneous states in this system21–25 but probably the most
clear evidence comes from the study of very low-doped
LaCoO3. Magnetic measurements7 have shown that at very
low doping ��1% of Sr� the moment per doped hole �per Sr�
is much bigger than that of thus created LS Co4+ with
S=1 /2: instead there appear magnetic impurities with unusu-
ally large spin S=5–10, which signals that each hole is
“dressed” by the magnetic cloud due to the promotion of
some of neighboring Co3+ ions to a magnetic state. The mag-
netic neutron scattering, ESR, and NMR studies of such
system26 even allowed to determine the size and shape of
such magnetic clusters formed around doped holes.

It is possible to use different approaches to describe theo-
retically the phenomenon of phase separation. One such
method is the direct numerical investigation.1 Or one can
assume the formation of spin-state polarons, calculate their
energy and check whether and at which conditions the for-
mation of such polarons can be energetically favorable. But
the most direct way, by which one usually starts, is first to
assume the existence of a homogeneous state and to check
for its stability against phase separation. This was the route
taken earlier by us for the double exchange model,27 for the
situation close to charge ordering,28 for two-component
model of manganites,29,30 or for orbital ordering.4 If the ho-
mogeneous state turns out to be unstable, then at the second
step one can investigate particular types of inhomogeneous
states, which can be formed. In the present paper, we follow
this route for the doped systems with SST.

II. SPIN STATES OF COBALT IONS

Let us list the possible spin states of Co3+ and Co4+ ions
in a CoO6 octahedron, which is the main building block of
perovskitelike Co-based compounds �we will consider below
the hole-doped cobaltites, nominally containing Co3+ and
Co4+�. The electron configuration of Co3+ ion is 3d6. It is
well known that in the crystal field of cubic symmetry, a d
level with the fivefold orbital degeneracy is split into a dou-
bly degenerate eg level and a triply degenerate t2g level. In
the octahedral coordination, the t2g level lies below the eg
level. So, a Co3+ ion can have three low-energy spin states:
LS, IS, and HS states.

In the LS state �S=0�, all t2g states are occupied and the eg
levels are empty. In the IS state �S=1�, there are five elec-
trons at the t2g level and one eg electron. In the HS state �S
=2�, we have four t2g and two eg electrons. The correspond-
ing energies of these states are ELS

�3+�=E0, EIS
�3+�=E0+�−JH,

and EHS
�3+�=E0+2�−4JH, where � is the energy splitting be-

tween t2g and eg levels, and JH is the Hund’s rule coupling
constant. For the Co4+ ion �3d5�, there are three similar low-
lying spin states, corresponding to different distributions of
five electrons between t2g and eg levels. In the LS state �S
=1 /2�, there are five electrons at the t2g level and no eg
electrons. In the IS state �S=3 /2�, we have four t2g electrons
and one eg electron. In the HS state �S=5 /2�, the numbers of
t2g and eg electrons are equal to three and two, respectively.
The corresponding energies of these states for the Co4+ ion
are ELS

�4+�=E1, EIS
�4+�=E1+�−2JH, and EHS

�4+�=E1+2�−6JH.

Here, we introduced E0 and E1 as some reference energy
values for Co3+ and Co4+, respectively. As we shall demon-
strate below, the results do not depend much on the specific
choice of E0 and E1. All aforementioned configurations of Co
ions and their energies are summarized in Table I.

The type of the ground state for a separate Co3+ or Co4+

ion depends on the relationship between � and JH. It can be
easily seen that at ��3JH, the LS is the ground state both
for Co3+ and Co4+. At 2JH���3JH, Co3+ still has the LS
ground state, whereas for Co4+ the HS is more favorable.
Eventually, at ��2JH, the HS state is the lowest in energy
for both ions. Hence, for isolated cobalt ions, the IS ground
state does not appear.

The situation becomes more complicated if there exists
electron hopping between cobalt ions. First, note that the
hopping integrals between the t2g states in cobaltites are as a
rule much smaller than for the eg states. In the treatment
below, we ignore the t2g− t2g hopping and take into account
only the hopping of eg electrons. The inclusion of t2g− t2g
hoppings will not modify qualitative results, introducing
only minor numerical changes. Second, the states with the
number of electrons per ion larger than six are unfavorable
due to the strong on-site Coulomb repulsion. Third, the tran-
sitions of electrons between the lattice sites corresponding to
the changes of spin by more than one half are strongly sup-
pressed since they involve the simultaneous change in the
state for two or more electrons.

As a result, in doped cobaltites there remain only two
most probable hopping processes: �i� the transitions of elec-
trons between the IS Co3+ and LS Co4+ and �ii� transitions
between the HS Co3+ and IS Co4+. The corresponding con-
figurations are illustrated in Table I. Thus, to facilitate the
kinetic-energy gain due to the electron hopping, one can cre-
ate a ground state with intermediate spins. Such a situation
can arise if in the ground state for isolated ions, we have
either LS Co4+ or HS Co3+. The former case corresponds to
��3JH when some of LS Co3+ can be promoted to the IS
state. In the latter case corresponding to ��2JH, some HS
Co4+ are promoted to the IS state. In the intermediate situa-

TABLE I. �Color online� Possible electron configurations of Co
ions and their energies.
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tion, 2JH���3JH, the electron hopping can occur if we
promote both ions, Co3+ and Co4+, to some excited states.
Such double excitations seem to be less probable. Below, we
first discuss the most realistic case ��3JH at different dop-
ing levels with a special emphasis on the possibility of phase
separation. Then, we perform the similar study for ��2JH.
After that, we construct the phase diagram of the system in
� /JH-doping plane.

Actually, �, or rather � / t, regularly depends on the rare-
earth radius rA in the series of RCoO3 perovskites and in-
creases with decreasing rA.

III. ELECTRON DELOCALIZATION AND SPIN-STATE
TRANSITIONS: THE CASE OF LS-LS GROUND

STATE FOR ISOLATED IONS

Let us first discuss the situation corresponding to doped
perovskite cobaltites, where Co3+ and Co4+ ions occupy the
sites of a simple-cubic lattice. The relative number of Co4+

and Co3+ is, respectively, x and 1−x. Let us assume that in
the absence of electron hopping, cobalt ions of both types are
in the LS state ���3JH�; this is a typical situation, e.g., in
the hole-doped La1−xSrxCoO3, and even more so for smaller
rare earths R in doped RCoO3.31 By promoting some Co3+

ions to the IS state, we can have a gain in kinetic energy
related to the electron hopping from IS Co3+ to LS Co4+.

To treat this situation in more detail, let us introduce cre-
ation operators an

† and cn
† for an electron at the eg level and a

hole at the t2g level, respectively, at site n according to the
following rules �choosing CoLS

3+ as the vacuum state�

�0� = �CoLS
3+�, E�vac� = E0,

an
†�0� = �Co2+�, E�2+� = U�,

cn
†�0� = �CoLS

4+�, E�h� = E1. �1�

In terms of these operators, the intermediate-spin state of
Co3+ ions can be constructed in the following way:

�CoIS
3+� = cn

†an
†�0�, EIS

�3+� = E0 + � − JH = E2. �2�

Summing up all possible low-energy configurations, we can
write the following single-site Hamiltonian

Hn = E0 + �E1 − E0�nn
h + �U� − E0�nn

e

+ ��E2 − E0� − �E1 − E0� − �U� − E0��nn
hnn

e , �3�

where nn
e =an

†an and nn
h =cn

†cn are the operators describing the
numbers of electrons at eg levels and holes at t2g levels,
respectively. Writing Eq. �3� in a more compact form, we
have

Hn = �E0 + �E1 − E0��nn
h − nn

e�� + �� − JH�nn
e + Unn

e�1 − nn
h� ,

�4�

where U=U�+E1−�+JH−2E0. Taking the sum over all lat-
tice sites and introducing the intersite hopping terms, we get

H = �
n

�E0 + �E1 − E0 − ���nn
h − nn

e�� + �1�
n

nn
e

+ U�
n

nn
e�1 − nn

h� − t �
�nm�

�an
†am + h.c.� , �5�

where �1=�−JH.
In Hamiltonian �5�, we took into account only the most

significant hopping integral t describing the transitions of
electrons from the occupied eg level of IS Co3+ to the empty
eg level of LS Co4+. Moreover, we assume that an electron
can move only without changing the z projection of its spin,
and, because of the Hund’s rule coupling, the spin of an
itinerant �eg� electron and the total spin of core �t2g� electrons
are parallel to each other. Hence, we can assume a ferromag-
netic ground state and omit a spin index of electron opera-
tors. The summation in the last term in Eq. �5� is performed
over nearest-neighbor sites. We assume here that Co ions
form a simple-cubic lattice. We also neglect the possible
complications related to the orbital degeneracy of the eg level
occupied by a single electron; these are not crucial for the
present problem.

Such simplified Hamiltonian �5� is quite similar to that of
the Falicov-Kimball model.32 In the model �Eq. �5�� we have,
in fact, an interplay between the electron localization in the
LS state and the itinerancy in the IS state. This kind of in-
terplay was analyzed in detail both analytically29 and
numerically,33 and a tendency for a nanoscale phase separa-
tion was demonstrated. The local �atomic scale� charge and
spin inhomogeneities, related to electronic phase separation,
were also found recently in exact calculations for small
clusters.34 Here, following the technique suggested in Refs.
29 and 30, we address the specific features of the systems
with the spin-state transitions.

The average numbers of eg electrons and t2g holes per site
�nn

e�=ne and �nn
h�=nh obey the evident relationship

nh−ne=x �by electrons we mean here not the real extra elec-
trons, which would create the state Co2+, but the electrons in
the initially empty eg levels, promoted there by the LS-IS
transition, i.e., we still are dealing with the “mixture” of Co3+

and Co4+ in the hole-doped system�.
Then, the energy per site can be written as

E�1� = E0�1 − x� + E1x + �H1�/N , �6�

where

H1 = �1�
n

nn
e + U�

n
nn

e�1 − nn
h� − t �

�nm�
�an

†am + h.c.� . �7�

Let us consider a homogeneous state corresponding to a
certain density ne of electrons promoted to the IS Co3+ state.
We calculate the energy spectrum using the Hubbard I
decoupling35 in the equation of motion for the one-electron
Green’s function Ge�n ,n0 ; t− t0�=−i�Tan�t�an0

† �t0�� for these
promoted eg electrons �analogous to the band �b� electrons in
Refs. 29 and 33�. In the frequency-momentum representation
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Ge�k,�� =
� + � − �1 − Unh

�� + � − �1 − E1�k���� + � − �1 − E2�k��
,

�8�

where

E1,2�k� =
U + 	�k�

2

	
U − 	�k�

2
�2

+ U	�k��1 − nh�

�9�

and 	�k� is the energy spectrum at U=0. We choose
	�k� in the simplest tight-binding form, ignoring possible
orbital effects and not taking into account the specific
features of the hopping integrals of eg electrons,
�	�k�=−2t�cos kx+cos ky +cos kz� for simple cubic lattice�.
Below, we consider the case of large on-site Coulomb repul-
sion energy, U / t�1. In this case, the Hubbard I approxima-
tion is an adequate appropriate method allowing one to find
out the main features of the electron-band structure, being in
good agreement both with experiment and with numerical
results.36

Using Eq. �8� for the Green’s function, we calculate the
densities ne and nh of eg electrons and holes. We do all cal-
culations in the limit U→�. Based on these results, we can
determine the dependence of the total energy on the doping
level x. These calculations are similar to those performed in
Ref. 29. The b electrons in Ref. 29 correspond to our eg
electrons at IS Co3+ ions, whereas the number of localized l
electrons in Ref. 29, nl, corresponds to the number of LS
Co3+ ions, 1−nh. Using this similarity, we could make a
direct mapping between the two systems. However, in the
systems with spin-state transitions there exists another homo-
geneous state in addition to that considered in Ref. 29.
Namely, it corresponds to all Co3+ ions in an intermediate-
spin state �nh=1, ne=1−x�. Formally, in terms of a conduc-
tion band and localized level, this state can be treated as a
combination of empty localized level lying below the Fermi
level of the partially filled conduction band, which is in gen-
eral not possible. In our case, the state corresponding to the
localized level disappears in the absence of LS Co3+ ions.

Let us denote the state similar to that in Ref. 29 �that is
the state with coexisting LS and IS Co3+ ions� as a type 1
state and the state without LS Co3+ as type 2 state. The
energies of these two states as functions of doping x are
shown in Fig. 1 at �1 /zt=0.2 �z=6 is the number of nearest
neighbors�. The type 2 state becomes favorable at x�x2.
Note that at x�x3 both states, 1 and 2, are equivalent. We
can see that at x�x1, there are no electrons promoted to the
eg level �ne=0�, see Fig. 2.

At x�x1 the number of eg electrons gradually grows. In
the absence of type 2 state, this growth would continue up to
x=x3 when all Co3+ ions would turn to the intermediate-spin
state. At x=x2, however, the type 2 state becomes favorable
in energy, and the jumplike transition to this state occurs.
The ground-state energy E for the homogeneous system as
function of x is shown in Fig. 1 by the solid curve. At the
same time, it is clear from this figure that in the doping range
0�x
x3 the inhomogeneous state, being a mixture of states
with nh=1 and ne=0, is more favorable. The energy of this

mixed state is shown in Fig. 1 by the dot-dashed line.
The densities of Co3+ ions in intermediate-spin �ne� and

low-spin �1−nh� states as a function of x are shown in Fig. 2
by dot-dashed and solid curves, respectively. We see a jump-
like increase in ne at x2, when the homogeneous type 2 state
would become favorable. The behavior of ne and
1−nh at x�x2 in the absence of type 2 state are shown by
thin dashed lines.

At a small band filling, ne�1, we can write an approxi-
mate explicit expression for the total energy E assuming that
the Fermi surface is spherical

FIG. 1. �Color online� The energies of type 1 and 2 states as
function of doping x. The solid curve �red� corresponds to the more
favorable in energy homogeneous state, whereas the states with
higher energies are shown by dashed lines �blue�, see the text. The
dot-dashed line �green� corresponds to the energy of an inhomoge-
neous state, obtained by Maxwell construction. �1 /zt=0.2.

FIG. 2. �Color online� The densities of Co3+ ions in
intermediate- �ne=nIS,Co3+� and low-spin �1−nh=nLS,Co3+� homoge-
neous states as a function of x at �1 /zt=0.2. At x1�x�x2, both
spin states of Co3+ coexist, whereas at x=x2, there occurs a jump-
like transition to the purely IS state of Co3+ ions. Dashed lines
illustrate the possible behavior of nIS,Co3+ and nLS,Co3+ for the type 1
state similar to that described in Ref. 29.
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E � �1ne − tznenh +
3t

5
�36�4nh�1/3�ne�5/3. �10�

The density ne of itinerant electrons is determined by mini-
mization of Eq. �10� with respect to ne taking into account
that nh=x+ne. It can be easily shown that the solution for the
energy minimum corresponding to ne�0 can exist only if
�1� tzx. This means that at �1 / tz�1 the LS Co3+ ions can-
not be promoted to the IS state at any doping x.

The dependence of ne on doping x determines the behav-
ior of magnetic moment of Co ions. Indeed, the LS Co3+ ions
correspond to zero magnetic moment, S=0, while the doping
leads to the creation of LS Co4+ ions �S=1 /2� and also pro-
vides the promotion of some Co3+ ions to the IS state
�S=1�. So, the data presented in Fig. 2 could be redrawn in
terms of magnetic moment per dopant �or, in other words,
per Co4+�, see Fig. 3. For the homogeneous state, we see in
Fig. 3 that the jumplike transition in the density ne of itiner-
ant electrons manifests itself in a jump of magnetic moment.

At the same time, in the phase-separated state, the magnetic
moment per Co4+ ion remains constant since both the content
of the phase with IS Co3+ and the number of Co4+ ions are
proportional to x. The value of magnetic moment per Co4+ is
determined by the value of x, where the dot-dashed line in
Fig. 1 touches the curve corresponding to the energy of the
homogeneous state. Both the height of the jump for the mag-
netic moment in the homogeneous state and the value of
magnetic moment per Co4+ in the phase-separated state de-
pend drastically on the parameters of the model, especially
on the hopping integral t. In Fig. 3, we see that the increase
in t by a factor of two leads to a pronounced growth of both
mentioned values. Note here that the values of magnetic mo-
ment under discussion correspond to macroscopic phase
separation, that is, the characteristic sizes of inhomogeneities
are much larger than the lattice constant. This is indeed so at
relatively large x �exceeding the percolation threshold for the
phase with itinerant charge carriers�. At small x, it is natural
to expect that the phase-separated system will consist of
small droplets �spin-state polarons� containing only one Co4+

ion surrounded by IS Co3+. In the latter case, the magnetic
moment per Co4+ should be larger than that corresponding to
the macroscopic phase separation. This could be the case for
spin polarons in low-doped La1−xSrxCoO3 observed in Ref.
26, where the polarons with the magnetic moment equal to
13�B seem to be the most probable. From our considerations,
one should expect that the value of magnetic moment per
Co4+ should become smaller with the increase in doping x.
The exact calculations for small clusters also demonstrate
that in a suitable range of parameters, the saturated magnetic
moment can exist at relatively low temperatures also in
atomic-size doped clusters of various geometries.37

Thus, we demonstrated that the spin-state transitions in
hole-doped cobaltites can be described based on the model
involving the coexistence and competition of localized and
itinerant electron states. In contrast to the similar model for
manganites,29,30 this model allows the possibility of a jump-
like transition to the purely itinerant state corresponding in
the case of cobaltites to the LS→ IS transition for all Co3+

ions. However, at lower doping, before reaching this homo-
geneous metallic state with all Co ions magnetic, the phase-
separated state comes into play, in which only a part of Co3+

ions is promoted to the IS state, doped holes being located in
these regions. Experimental data on La1−xSrxCoO3 �Refs.
21–26� seem to be in agreement with this picture.

IV. ELECTRON DELOCALIZATION AND SPIN-STATE
TRANSITIONS: THE CASE OF HS-HS GROUND STATE

FOR ISOLATED IONS

Let us now discuss the situation at ��2JH, when in the
absence of electron hopping, it is favorable for both Co3+ and
Co4+ to be in the HS state. The transfer of charge carriers
between Co ions becomes possible only if we promote a hole
to the eg level of Co4+ and transform such an ion from HS to
IS state.

(a)

(b)

FIG. 3. �Color online� Magnetic moment per one Co4+ ion
versus doping x at different values of the hopping integral t:
�a� t /JH=2 and �b� t /JH=4. Solid and dot curves �red� correspond
to the homogeneous states. The behavior M in the phase-separated
state is shown by the dashed line �blue�.
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So, in this case, instead of electron hopping from IS Co3+

to LS Co4+, we have the electron hopping from the HS Co3+

to IS Co4+, or the hole hopping from IS Co4+ to HS Co3+

�this representation is more convenient here�. Using this
analogy, we can choose the HS state of Co4+ as a new
vacuum state and write relationships similar to Eqs. �1� and
�2� as

�0� = �CoHS
4+ �, Ẽ�vac� = E1 + 2� − 6JH = Ẽ0,

c̃n
†�0� = �Co5+�, E�5+� = Ũ�,

ãn
†�0� = �CoHS

3+ �, E�e� = E0 + 2� − 4JH = Ẽ1,

ãn
†c̃n

†�0� = �CoIS
4+�, EIS

�4+� = E0 + � − 2JH = Ẽ2. �11�

The corresponding single-site Hamiltonian can be found
by the following substitution in Eqs. �3� and �4�: E0, E1, E2,

U→ Ẽ0, Ẽ1, Ẽ2, Ũ, and also nn
e → ñn

h and nn
h → ñn

e .
As a result, we can rewrite the Hamiltonian �5� in the

following form:

H = �
n

�Ẽ0 + �Ẽ0 − Ẽ1 − ���ñn
e − ñn

h�� + �2�
n

ñn
h

+ Ũ�
n

ñn
h�1 − ñn

n� − t �
�nm�

�c̃n
†c̃m + h.c.� . �12�

Here, �2=4JH−� is the energy difference between the IS
and HS Co4+ ions, c̃n

† and c̃n are creation and annihilation
operators for a hole promoted to the eg level of IS Co4+ at
site n �ñn

h = c̃n
†c̃n�, and ñn

e = ãn
†ãn is the operator describing the

number �0 or 1� of additional localized t2g electrons at site n
�ãn

† and ãn are creation and annihilation operators for such
electrons�. The average numbers of electrons and holes per
site obey now the relationship ñe− ñh=1−x.

In this case, the energy per site �Eq. �6�� can be rewritten
as

E�2� = E0�1 − x� + E1x + �H2�/N , �13�

where

H2 = �
n

�2� − 6JH + 2JH�ñn
e − ñn

h��

+ �2�
n

ñn
h + Ũ�

n
ñn

h�1 − ñn
n� − t �

�nm�
�ãn

†ãm + h.c.� .

�14�

Note that the difference E�2�−E�1� does not depend on the
choice of E0 and E1, this fact will be helpful in constructing
the phase diagrams in the next section.

Thus, the behavior of the system energy and charge-
carrier densities, ñe and ñh, are similar to those shown in
Figs. 1 and 2. In these figures, we should replace nh→ ñe,
ne→ ñh, and x→1−x, that is, the densities of Co3+ ions in IS
�ne=nIS,Co3+� and LS �1−nh=nLS,Co3+� states become here the

densities of Co4+ ions in IS �ñh=nIS,Co4+� and HS
�1− ñe=nHS,Co4+� states. Note also that such an exact similar-
ity between the LS-LS and HS-HS cases appears since we, in
fact, deal with the spinless fermions �the spins of charge
carriers are parallel�. So, we have an electron-hole symmetry
between an empty eg level at LS Co3+ and a completely
occupied such level at HS Co3+.

V. PHASE DIAGRAMS

Based on the results of the previous sections, we can sum-
marize the behavior of the system as function of doping at
different values of the � /JH ratio and to draw the corre-
sponding phase diagram. The form of this phase diagram
depends drastically on the characteristic values of the hop-
ping integral t. The general features of the evolution of the

(a)

(b)

FIG. 4. �Color online� Possible homogeneous states of the sys-
tem under study at different values of the hopping integral t: �a�
t /JH=1 and �b� t /JH=1.5. The boundaries between analogous
phases in the upper and lower parts of the phase diagram are shown
by the same lines �solid, dashed, or dot-dashed�.
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system with doping from one homogeneous state to another
are illustrated in Fig. 4. At rather small t �t /JH
1�, see Fig.
4�a�, we have clearly defined regions of the phase diagram
corresponding to ��3JH and ��2JH �corresponding to the
situations discussed in Secs. III and IV, respectively�. In each
of these regions, the variation in doping leads to the transi-
tions between the phase with only localized carriers to the
phase when some charge carriers are delocalized and, even-
tually, to the phase when all charge carriers are itinerant.
These two regions, with ��3JH and ��2JH, are separated
by the phase with Co3+ in LS �S=0� and Co4+ in HS
�S=5 /2� states, with the charge carriers localized because of
the spin blockade.20 At larger t �t /JH�1�, see Fig. 4�b�, the
latter intermediate region collapses at a certain doping range
and a direct spin-state transition between the phases with
fully delocalized charge carriers becomes possible.

The form of the phase diagram changes if we take into
account the possibility of phase separation. The correspond-
ing phase diagrams drawn at different values of t /JH are
shown in Fig. 5. We see that instead of phases with partially
and fully delocalized charge carriers, there appear two broad
regions of phase separation where the domains of fully lo-
calized and fully delocalized charge carriers are intermixed.
Again, at rather small t �t /JH
1�, we have and intermediate
region where the charge carries are localized at any doping
level �with Co3+ and Co4+ in LS and HS states, respectively�.
This intermediate region becomes narrower with the growth
of t. At t /JH
1.24 it becomes divided into two separate
areas �Fig. 5�b��, and there appears a boundary between PS I
and PS II phases �see caption to Fig. 5�. With further growth
of the hopping integral the two regions of fully localized
phase continue to diminish and disappear at t /JH
1.44.

Let us note here that the phase diagram along the � axis
could be reproduced varying the average ionic radius of the
rare-earth ions in cobaltites �see, e.g., Refs. 38 and 39�.

Note also that all phase diagrams were obtained in the
limit U→�. In this approximation, we do not take into ac-
count, in particular, the spin-spin, spin-orbital, and orbital-
orbital correlations between neighboring sites, which appear
in two-band Hubbard Hamiltonians �5� and �12�. This can
lead to different types of magnetic and orbital ordering in the
phases obtained in our paper. However, due to the relatively
small contribution of these correlations �they are of the order
of t2 /U� t, �, JH�, this does not change significantly the
obtained phase diagrams describing the phases with Co ions
in different spin states �the energy differences being ��, JH�.
In such a mean-field approach the fluctuation effects are
strongly suppressed but the main features of the phase dia-
grams remain qualitatively the same.

In addition, we neglect here the long-range Coulomb in-
teraction related to the charge disproportionalization in the
phase-separated state, which can reduce the doping range of
the phase separation and limit the size of the inhomogene-
ities thus created. Note that taking into account both the
long-range Coulomb repulsion and the surface energy terms
could, in principle, allow us to analyze the structure of
phase-separated states �e.g., droplets, alternating layers, or
rods� and to estimate the characteristic sizes of inhomogene-
ities and the percolation value of the doping level x, corre-
sponding to the insulator-metal transition.29,40,41

(a)

(b)

(c)

FIG. 5. �Color online� Phase diagrams including the phase-
separated states of the system under study at different values of
hopping integral t: �a� t /JH=1; �b� t /JH=1.3; and �c� t /JH=1.5. PS
I is the phase-separated state including the regions without itinerant
charge carriers, corresponding to LS Co3+, and those with com-
pletely delocalized charge carriers promoted to IS Co3+. PS II is the
similar phase-separated state where the regions with and without
itinerant charge carriers correspond to IS Co4+ and HS Co4+, re-
spectively. Regions 1 at panel �b� correspond to the charge carriers
located at HS Co4+ and LS Co3+, where the charge transfer between
Co sites is suppressed due to the spin blockade.
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VI. CONCLUSIONS

Based on a simple model of a strongly correlated electron
system with spin-state transitions, we demonstrated the ten-
dency to a phase separation for doped perovskite cobaltites
in a wide range of doping levels. The phase diagram includ-
ing large regions of inhomogeneous phase-separated states is
constructed. The form of the phase diagram turns out to be
strongly dependent on the ratio of the electron hopping inte-
gral t and the Hund’s rule coupling constant JH.

We did not analyze in detail the possible structure of the
phase-separated state. However, for the corresponding model
describing doped manganites, the calculations29 and numeri-
cal simulations33 taking into account the surface and long-
range Coulomb contributions to the total energy lead to the

characteristic size of nanoscale inhomogeneities of the order
of several lattice constants. One can expect that the inhomo-
geneities caused by the phase separation in cobaltites with
spin-state transitions would be of a similar scale.
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